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This article presents results of calculations of the interaction of a shock wave (SW) with a cloud of particles. It is 

shown that the volume concentration of particles has a substantial effect on the acceleration of the cloud. 
1. We will examine a cloud of solid spherical particles in the path of a shock wave. It is necessary to fired the 

parameters of the gas and particles that result from the interaction of the wave with the cloud. The motion of the particles is 
modeled by a non-collisional kinetic equation, while the motion of the gas is modeled by the averaged equations of a dust- 
bearing gas. It is assumed that the particles may be dispersed with respect to velocity and size. The given model was described 

in detail in [1, 2] and can be used in the case when either the particle trajectories do not intersect within the flow region or 

particle collisions are rare (Kn --- d/(6m2L ) > 1, L being the relative distance travelled by a particle in the cloud, m 2 the 
volume concentration of particles, and d particle diameter). Ignoring the effects of heat transfer, we write the complete system 

of equations [1, 2] in the form 
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where summation is performed over repeating indices i; f is the one-particle distribution function in the phase space t, x i, V2 i, 

r s (i = I, 2, 3); dV v is an element of volume in the velocity space; n is concentration; a i, <v2i> are the i-th components of 

particle acceleration and mean velocity; p,/~, and c o are pressure, viscosity, and sonic velocity in the gas; 3' is the adiabatic 

exponent; Re and M12 are tile Reynolds and Mach numbers; m I, m 2, #I, P2, Pll, P22 are tile vohlIne concentrations, mean 

densities, and true densities of the gas and particles; ~I is the specific energy of the gas; FI2 i the i-th component of the force 

of gas-particle interaction, associated with velocity disequilibrium. Here, we calculate the motion of the gas and particles in 

Novosibirsk. Translated from Prikladnaya Mekhanika i Teklmicheskaya Fizika, No; 2, pp. 26-37, March-April, 1994. 

Original article submitted April 13, 1993. 

0023-8944/94/3502-0183512.50 �9 1994 Plenu~m Publishing Corporation 183 



x ~ c t n  

o t'~ e,4 46 e.lo, sec 

Fig. 1 

the axisymmetric and plane cases. Since the cloud may move large distance when accelerating, it is best to solve the problem 

in a system based on the center of  mass of the cloud. Directing the z axis along the velocity of  the center of mass D and 
directing r perpendicular to this velocity, we rewrite system (1.1) as follows: 
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Here, k = 0 in the plane case and k = 1 in the axisymmetric case; v t, v 2, Wl, and w 2 are the z- and rlcomponents of the 
velocities of  the gas and particles; an l superscript denotes the parameters of  the gas and particles in the laboratory coordinate 

system. The remaining notation is the same as in Eqs. (1.1). 

System (1.1)-(1.2) is used to calculate the subsonic (M12 < 1) and supersonic (M12 > 1) motions of  the particles in 
the gas. In the case of  supersonic motion, a conical Mach wave forms near each particle. This model does not permit 

calculation of the shock wave "sitting" on a given particle, but the presence of the wave is accounted for in the relation 

Cd(M12 ). Thus, Cd(M12 > 1)/Cd(M12 < 1) - 2. This makes it possible to correctly describe the averaged supersonic motion 
of the cloud in the gas. The coefficient 1" in the formula for C d (see Eqs. (1.1)) is chosen on the basis of  agreement of the 

calculated and experimental [3, 4] dependence of the coordinate of a single particle on time x(t) during its acceleration behind 

the shock front. The line in Fig. 1 shows the results of  calculation of the trajectory of a single particle with ~" = 0.38, while 
the circles show experimental results for particles of bronze with P22 = 8.6"103 kg/m3 and d = 180 + 10/zm. The Math 

number of  the shock wave M 0 = 2.6, and the initial pressure pO = 1 atm. It foliows from Fig. 1 that the formula chosen for 

C d adequately describes the motion of a single particle within broad ranges of MI2 and Re. 
2. System (1.2) was solved numerically on a computer using an algorithm that consists essentially of  the following. 

A rectangular Eulerian grid is constructed in the plane (r, z). The mesh size of the grid in terms of r and z is 2h r and 2h z, 
respectively. The equations for the gas are written on the Eulerian grid with the use of an explicit f'mite-difference scheme 
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of third-order accuracy (vector notation is employed also - see Eqs. (1.2)) [5, 6]. The non-collisional kinetic equation is 

solvedin Lagrangian variables. We choose an individual volume within the phase space of the particles ~ (t). The condition 

of conservation of the total number of particles N in the volume has the form 

.,v = f MV aVdr = to.st 
r(0 

where | (t) is comprised of the same particles whose trajectories are determined from the equations 

(2.1) 

dz v2' dr do 2 dw2 d r  

d t  = -d~t = w2 , -~ t  = a;~,'-~t = a , , - ~ t  = O" (2.2) 

System (2.2) is consistent with the characteristics of the kinetic equation (the first equation in Eqs. (1.2)). The last equation 
in Eqs. (2.2) reflects the absence of particle fragmentation and coalescence�9 Differentiating Eq. (2.1) with respect to time and 

allowing for the Ostrogradskii-Gauss theorem and system (2.2), we easily obtain the non-coUisional kinetic equation in Eqs. 

(1.2). 
The region occupied by the particles is broken up at the moment t = 0 into rectangular Lagrangian cells of the size 

2h z, 2h r, so that all particles within each i-th cell have the same velocity V2i 0, W2i 0 and radius r i. As a result, the distribution 
function in the i-th particle cell at t = 0 is written as 

N. 
~, = ~(u 2 -- o~ -- w~ -- ri) , I~/ = 4(r/~ 

(N i is the number of  particles in the i-th cell and ~ is the delta function). The individual volume 7 ~ (t) will coincide with the 

volume of the moving cell, so the number of  particles in the i-th cell remains constant. Thus, the distribution function in the 
i-th cell at the moment t n will be given by the formula 

f ~  = 7, c~(v2 - v~,)t)(w 2 - w ~ ) t 3 ( r -  r~), (2.3) 
% 

where 

v 7 = 4 ( 4 y h ,  h ,, 

,,;, = ,,;,-' + ~ - ' ,  ~,~. = w~. -~ + ~aj -~, 
4 = 4 -~ + ~"~-' + ~ . - ' ~ / 2 ,  

r = t n - t n-1 is the time step. As follows from Eq�9 (2.3), the Lagrangian particle cells move relative of  the Eulerian grid with 

the velocities v2in, W2i n. The distribution function of ~n in the j-th Eulerian cell (EC) has the form 

~" = , --~7-, 3(v 2 - u~l~(w 2 - w~la(r- r~), (2.4) 

g.:' 
~. = ~ v. = (~).~, v~ = (rys; sj = 4hA, i V j '  q 
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where ~i n is the fraction of the volume occupied by the i-th particle cell in the j-th Eulerian cell; the quantities Sj and Sij n are 

shown in Fig. 2 for the i-th particle cell intersecting the j-th Eulerian cell. Summation in Eqs. (2.4) is performed over m 

particle cells intersecting the j-th Eulerian cell. We use (2.4) to find the mean value 

. f . f  ~ a  (2 .5)  
(0) = _1 va , - .  

n 

Inserting Eqs. (2.4) into Eq. (2.5), in the j-th Eulerian cell we obtain 

m 
(2.6) 

Formula (2.6) makes it possible to fred the mean parameters of the particles in an arbitrary EC. The parameters of the gas in 

the particle cells were found by linear interpolation. 

3. We will examine a cloud of solid spherical particles in a plane channel struck on the left side by a shock wave (Fig. 

3). The cloud is uniform at the moment t = 0 and covers the entire cross section of  the channel. Along z, the cloud is bounded 

by 1"2 and F 3. The coordinates of  the left and right boundaries of the cloud are z 1 and z, 2. We need to calculate the pattern of 

flow which arises due to interaction of the shock wave with the cloud of particles. We also need to fred the dependence of  the 

coordinate of the left boundary of  the cloud z 1 on time t. (The interaction of a shock wave with a cloud of  particles was studied 

experimentally in [3, 4] and the time dependence of the left boundary of the cloud was measured). There are no particles in 

region [21, so the parameters of  the gas were found by solving the system of Eulerian equations (ideal gas) by a method of  third- 

order accuracy. System (1.2) was solved in the region ~ by the numerical method described in Part 2. In Eqs. (1.2), we put 

k = 0 (plane case), ~" = 0.38, and D = I~ = 0 (laboratory coordinate system). The initial conditions were assigned in the form 

P i t  = 0 Pll, P = P ~  wl = O , z >  z § 

_ o 2 hMo2), P -- p~ + h)M~ - h), Pn - P l z M o / (  1 - h + 

o 1 = (1 - h)CO(M 0 - l/M0) , h = (y - 1) /(y + 1), (3.1) 

w 1--  0, M 0 = Do/Co, z < z +, 

m2 = nO2,/o = R(r)~(w2)c)(u2 ) in f~2' 
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where R(r) = 6m2~ 3"5(r - ds/2) for a monodisperse cloud of particles with the diameter d = ds; the function R(r) for the 

polydisperse case will be shown below. We take w 1 = 0 as the boundary conditions for the gas o n  3" i r13"13 '3I '33"3  and we 

assign the condition of symmetry on 3'2, 3'4 (see Fig. 3). The condition of mirror reflection is assigned for the particles on 

-YlI ' ly'i  and 3,31"33,'3 , while the condition of particle absorption is assigned on 3'2, 3'4. The value chosen for the parameters 

of the gas and the particles in the calculations were the same as in the experiments in [3, 4]. The gas was in a quiescent state 

ahead of the shock front: Wl ~ = Vl ~ = 0, Oll~ = 1.2 kg/m 3, pO = 105 Pa, 3' = 1.4 and M 0 = 2.8. The spherical particles 

examined were made of  organic glass and bronze. Calculations were performed when m20 = 10 -3 and 3-10 -2 for glass particles 

with 022 = 1.2"103 kg/m3 and d s = 300/zm, while the coordinates of the boundaries of the cloud at t = 0 were z 1 = 2.10 -2 

m, z 2 = 3.8.10 -2 m. For particles of  bronze with 022 = 8.6"103 kg/m3, ds = 130/~m, m2~ = 10 -3 and 10 -2, z I = 1.4-10 -2 

m, z 2 = 2.3.10 -2 m. 

Particle dimensions in the experiment changed within the ranged d - 80-130/~m in the case of bronze and d - 80-300 

/~m in the case of  glass. The effect of polydispersity is examined below using bronze particles as an example. Our calculations 

showed that the presence of a small fraction does not significantly alter the pattern of gas flow or the dependence of the 

coordinate of the left boundary of the cloud on time. 

Figure 4 shows the trajectory of the left boundary of the cloud zl(t) after interaction of the shock wave with a cloud 

of organic-glass particles. The circles represent experimental results from [3, 4] with a low-density cloud (n~ ~ = 10-3), the 

triangles showing the data for a denser cloud (m2 ~ = 3-10-2). The results of calculations performed with m2 ~ = 10 -2 and 3.10 -2 

are shown by curves 1 and 2, respectively. It is evident that the agreement between the experimental and theoretical resuks 

is good. For a cloud with m2~ = 3.10 "2, Figs. 5 and 6 show the functions for pressure p(z) and local Mach number Ml(Z) 

(M 1 = Vl/Cl) at the moments t = 50, 100, and 150/~sec (curves 1-3). The vertical segments on p(z) and Ml(Z) represent the 

left and right boundaries of  the cloud. It is evident that a reflected collective shock wave is formed ahead of  the cloud, this 

wave gradually "running away" from the latter. A rarefaction wave is formed inside the cloud. The gas is accelerated inside 

this wave and the flow becomes supersonic near the right boundary. The rarefaction wave does not decay significantly over 

time and has dimensions commensurate with the dimensions of the cloud. The amplitude of  the transmitted shock wave 

decreases relative to that of the incident wave, since the energy of the gas goes into acceleration of  the cloud. The formation 

of the reflected shock wave is connected with slowing of the gas by the particles of the cloud. Thus, the time of  formation t* 

should be on the order of  the time of velocity relaxation of the gas r v. We can evaluate r v from the equations of motion of the 

gas 
tt/2 

do I i ~p 3 Cd (3.2) 
d t  - p .  4 I o ,  - - o )la. 

At the stage of  formation of  the collective shock wave, particle velocity v 2 is considerably lower than the velocity of  the gas 

v 1 (v 2 < <  Vl). the second term in the right side of Eq. (3.2) can therefore be represented in the form - v J r  v, where 

4 m I d 
lr~ - 3 Cd, h ~ (3.3) 

Inserting d = 300/~m, C d - 1-0.5, m 2 = 3.10 -2, and v 1 = 7.102 into Eq. (3.3), we obtain r v - 20-40 #sec. This is close 

to t* - 50/zsec (see Figs. 5 and 6). It is evident from Figs. 5 and 6 that gas motion in the system based on the center of mass 
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of the cloud is quasisteady at t > 50/zsec. Thus, rewriting Eq. (3.2) in this system with allowance for O(v 1 - v2)/0t = 0, 

D = v 2, we obtain 

8.pp ~ �9 a 3 m 2 , 
a= -p=:,= - ~ p . C u ,  - ,,,)~ - ;'-;+~----V~l"~ - ",l(v~ - u=)/d. (3.4) 

Since the gas in the cloud and the cloud itself accelerate (0/Oz pl(Vl - v2)2 >_ 0, x) 2 ~ 0, v 1 ~ v2), we obtain the inequality 

0p/Oz > 0 from Eq. (3.4). The difference (v 1 - v 2) decreases with acceleration of the cloud, which leads to a corresponding 

reduction in the gradient I Op/Oz I and the amplitude of the reflected shock wave. Evident in Fig. 5 is the decrease in pressure 

p in the latter at t = 150 /~sec compared to t = 100/zsec. The equality 0p/0z = 0 is attained when the cloud moves at a 

velocity equal to the velocity of  the gas v 2 = v 1. The reflected shock wave disappears in this case. 

Figure 7 shows the relation Ml(z) in the interaction of a shock wave with a cloud of  particles of  organic glass when 

the volume concentration of  particles is low (m2 ~ = 10"3). Curves 1-3 correspond to t = 50, 100, and 150/~sec. The vertical 

segments denote the left and right boundaries of the cloud. It is evident that flow in the cloud is supersonic (M 1 > 1) and that 

no reflected collective shock wave appears. The appearance of small perturbations ahead of the left boundary of the cloud is 

related to artificial viscosity. 
The above analysis of  gas flow makes clear the reason for the greater acceleration of  a low-density cloud of particles. 

For such a cloud composed of  organic-glass particles (m2~ = 10 -3) (see Figs. 6 and 7), gas velocity in the cloud is roughly 

twice as great as in a dense cloud (m2 ~ = 3.10 -3) (see Figs. 5 and 6). The force f12 acting on a particle in the cloud is 

determined by the coefficient C d and the velocity head: f12 - -  C d P l l ( V l  --  V2) 2/d" Particle velocity v 2 < <  v I can be ignored 

in the initial stage of  acceleration (t _< 100/~sec), so that f12 - CdPllVl 2/d- The value o f j  = PllVl is roughly the same for 
the high- and low-density clouds. For proof, let us examine the change in j when a stream of gas is intercepted by the front 

to a reflected shock wave (m2~ = 3-10-2). Using u to designate the velocity of the collective reflected shock wave and the 

superscripts - and + to denote parameters of the gas ahead of and behind the SW, we obtain the following for the flow 

conservation conditions 

p~z(u~  - u )  = p '~ (u '~  - u ) ,  

from which 

a]  AP H u u 

f -  ,O11 V I U t '  

(3.5) 

where A p l  I = Pll  + , P11-;  Aj  = j+  - j- = P 1 1 + V l  + = P11-v1- .  Figures 5 and 6 can be used to find the velocity of the 
reflected shock wave u = Az/At = 60 m/see. Assuming in (3.5) that v 1 = 700 m/see and u = 60 m/see, we have Aj/j - 

0.1. The change in j with the interception of  the gas by the shock wave can be ignored. 

Another factor which affects f12 is the dependence of C a on M12. This was discussed earlier in [3, 4]. At m2 ~ = 10 .3 

M12 > 1, while at m2 ~ = 3.10 -2 M12 < 1. From tiffs, with allowance for Cd(MI2), we obtain the inequality Cd(n~0 = 10 3)  
> Cd(m2 ~ = 3.10-2). As our calculations showed, at t = 50/~sec we have Cd(m2 ~ = 3.10 "2) = 0.44, Ca(m2 ~ = 10 -3) = 

0.72. Thus, ignoring the dependence of j on m2 ~ in the first approximation, we obtain the estimate 
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where the superscript d denotes a quantity evaluated with m2 ~ = 3-10 -2 and the superscript n denotes a quantity 

m20 = 10 -3. The relations shown remain in force at later moments of time, when it is impossible to ignore v 2. A 

the flow of gas and o rgan ic -g l a s s  particles in the middle of the cloud for the moment t = 150 ~sec, we find 

]d = pdl(o~ _ ~,2) d = 1-6" 103 kg/(m 2"sec)' 

(u 1 - v2)d = 2.3" 102 m/sec, 

C a = 0.44, ]" = p~1(ol - v2)a = 1.92" 10 3 kg/(m2"sec), (v  1 -- ~2) n 

= 4" 102 m/sec, C~ = 0,5, 
from which 

ith 

ing 

fi~ C~]"(vl _ v2 ) n 
0.42. 

It should be noted that the difference seen b e t w e e n  f12 d and f12 n in the case of acceIeration of  a cloud of bro~ 

a shock wave (to be examined below) is connected mainly with the relation (Cd(M12). We thus have the follow, 

/zsec for bronze particles in the middle of the cloud 

i l l  

5O 

= ,d = 0.45, ]d 2,46" 103 kg/(m2-sec), (c' 1 -- v2) d = 3.4" l0 s m/see, C d 

j:" = 2,48-103 kg/(m2"sec), (v I - v2)n= 4.5" 102 m/see C~ = 0.83, 

from which 

d P - -  0 . 7 5  C d /C'n-  0 . 4 .  f t J  f u --~---,~ 

(Figure 8 shows the relation zl(t) in the case of acceleration of a cloud of bronze particles. The circles ard tria:gles 

respectively represent experimental results obtained with m2~ = 10 -3 and 10 -2. Curves 1 and 2 show the results of calcu!:-tion 

of the acceleration of  a monodisperse cloud (d s = 130/~m, M o = 2.8) when m2 ~ = 10 -3 and 10 -2. The qualitative p:.~ern here 

is the same as in Fig. 4. Curve 3 shows the calculated acceleration ofpolydisperse cloud with m2 ~ = 10 -2. The size iistrib :fion 

for his case is the same as in Fig. 9. The quantity ~b = ~rd3/6 R(d)Ad, is plotted off the y-axis (Fig. 9), while dk~mete~- d is 

plotted off the x-axis. The distribution function R(d) at t = 0 satisfies the condition 

f R(d)a(d) = m2, 
d 1 

where d 1 = 60/~m; d 2 = 130/~m; m2~ = I0 -2. We chose seven fractions from d t to d 2, with the increment Ad = 10 ~tm (Fig. 

9). It follows from the calculations that polydispersity affects the pattern of flow in the cloud. The decrease seen in zl(t) 

compared to the monodisperse case d s = 130/~m is connected with more rapid formation of  the reflected shock wave. As was 
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noted above, t* - r v - d. Thus, the presence of a fine fraction reduces the time of formation of  the reflected shock t*. 

Another feature of  flow polydispersity is the "separation" of the particles, with coarse and fine particles tending to accumulate 

near the left z 1 and right z 2 boundaries, respectively. 

4. Let us examine a uniform cloud of spherical particles having finite dimensions with respect to z and r. A shock wave 

strickes the cloud from the left (Fig. 10). The symbol r 0 denotes the coordinate of the upper boundary of  the cloud at the initial 

moment t = 0. The remaining notation coincides with the notation used in Fig. 3. It is assumed that the cloud is axisymmetric 

and is in an infinite region filled with gas. (In the numerical calculations, the region fl 1 is bounded by 3'2, "(3, and 3'4, for which 

mirror symmetry was specified; on 3"1, we set w I = 0.) The equations of an ideal gas were solved in f~l, while system (1.2) 

was solved in 92. Here, we set ~" = 0.25, k = 1 (axisymmetric case). The calculations were performed in the system based 

on the center of mass of  the cloud. The initial conditions were given by Eqs. (3.1) with the following parameters for gas and 

particles: Pl l  0 = 1 kg/m 3, pO = 8.64.104 Pa, 3' = 1.4, M 0 = 3, z o = 0.9 m, z 1 = 1.9 m, r o = 0.6 m, P22 = 2.7"103, ds 

= 4.10 .3 m, m20 = 2.10 "2 (z o and z I are the coordinates of the boundaries of the cloud with respect to z; r 0 is the radius of 

the cloud) (Fig. 10). The boundary conditions for the gas were describe above. For the particles, we assumed that mirror 

reflection occurred on the axis r = 0 and particle absorption took place on 3"2, 3'3, 3'4. Reflected and transmitted shock waves 

resulted from the interaction of  the incident shock with the cloud. The transmitted wave left the theoretical region through the 

boundary 3"4, while the reflected wave appeared in front of the cloud. 

The arrows in Fig. 11 show the velocity field of the gas at t = 5.68.10 -3 see. The solid line show the reflected shock 

wave and the boundary of the cloud. The dashed line shows the Mach line (M = 1). It is evident that a stagnant region in 

which gas velocity is considerably lower than in the external region (r > 0.6 m) develops behind the cloud. A constant negative 

pressure gradient is established inside the cloud along z. This gradient offsets the force F12 z which acts on the gas from the 

direction of the particles. Figure 12 shows the relation p(z) at t = 5.68" 10 -3 sec in three sections r = const. Line 1 corresponds 

to the axis r = 0, 2 corresponds to the boundary of  the cloud r = 0.6 m, and 3 corresponds to r = 1 m. An increase in r leads 

to a decrease in the amplitude of  the shock wave and the pressure gradient in the cloud, as well as to displacement of the front 

downstream. 

Figure 13 shows the field of particle velocity in the cloud at t = 5.68.10 -3 see. It follows from the figure that the cloud 

is compressed along the z axis over time and particles are carried into the external region (r > 0.6 m) through the upper 

boundary I '  3. Appreciably greater deformation of the cloud occurs when the cloud interacts with a shock wave with M 0 = 10. 

Figure 14 shows the position of  the centers of particle cells at t = 2.9-10 -2 sec as a result of  the interaction of  a shock wave 

(M 0 = 10) with a cloud of  particles having the following dimensions at t = 0: z 0 = 6 m, z I = 13.5 m, r 0 = 2.75 m, m2~ 
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= 2.10 -2. The deformation of the cloud in the internal region (r < 2.8 m) results in the formation of a dense core (m 2 - 

4.10-2). Particles leave this core on the windward side and form a low-density (m 2 - 10-4-10 "3) "tail" that extends 

downstream. The appearance of the tail is connected with the fact that gas velocity and the coefficient C a are greater in the 

external region (r > 2.8 m) than in the internal region (r < 2.8 m). Thus, the force f12 - Caj(vl - v2) acting on each 

particle in the external region will also be greater than the corresponding force in the internal region. 

The collective effects described above have a significant influence on the acceleration of  the center of mass of the 

cloud. Figure 15 shows the dependence of the velocity of the center of mass D on time t for m2~ = 2.10 -2 and 5-10-4 (lines 

1 and 2) after the interaction of a cloud of finite dimensions (z 0 = 0.9 m, z I = 1.9 m, r 0 = 0.6 m) with a shock wave with 

M 0 = 3. Velocity D for the denser cloud (m20 = 2-10 "2) is half that for the less dense cloud (m20 = 5.10-4). This effect is 

connected with a difference in the character of flow around the cloud in each of the two cases. The flow in the low-density 

cloud is supersonic (M12 > 1), while flow in the high-density cloud is subsonic (MI2 < 1). As a result, the force f12 - 

Co(MI2)j(vl - v2)/2 acting on a particle in the low-density cloud will be greater than the corresponding force acting on a 

particle in the high-density cloud. 

In conclusion, we thank V. M. Boiko for discussing the results of the study with us. 
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